Interactive cutting of finite elements based deformable objects in virtual environments

نویسنده

  • Lenka Jerábková
چکیده

There is a wide range of virtual reality (VR) applications that benefit from physically based modeling, such as assembly simulation, robotics, training and teaching (e.g., medical, military, sports) and entertainment. The dynamics of rigid bodies is well understood and several open source as well as commercial physics engines supporting articulated rigid bodies and particle systems are available. On the other hand, the simulation of deformable bodies is an objective of current research. The main application areas of deformable objects simulation in computer graphics and VR are the simulation of cloth and medical simulation. The challenge of VR applications is the real time simulation requirement. The raising computational power of the last decades allowed for adapting selected methods known from engineering sciences for interactive simulation. The simulation of cutting is especially challenging though, as most methods suffer from both performance and stability issues. Although a number of approaches have been presented over the last decade, the problem has not been solved satisfyingly, yet. This thesis presents methods for an interactive simulation of finite elements based deformable objects as used, e.g., in VR surgical simulators. The main objectives of such simulators are stability and performance of the employed methods allowing for an interactive object manipulation including topological changes in real time. A novel method for interactive cutting of deformable objects in virtual environments is presented. The key to this method is the usage of the extended finite elements method (XFEM). The XFEM can effectively model discontinuities within an FEM mesh without creating new mesh elements and thus minimizing the impact on the performance of the simulation. The XFEM can be applied to advanced constitutive models used for the interactive simulation of large deformations. Moreover, an analysis of mass lumping techniques, showing that the stability of the simulation is guaranteed even when small portions of the material are cut is presented. The XFEM based cutting surpasses the currently most widely used remeshing methods in both, performance and stability and is suitable for interactive VR simulation. Further, a software architecture for physical simulation of deformable objects in VR applications is proposed. The framework is suitable for the creation of complex VR applications as, e.g., a virtual surgical trainer. It uses thread level task parallelization for the concurrent execution of visualization, collision detection, haptics and deformation. Moreover, a parallelization approach for the deformation algorithm, which is the most computationally intensive part is proposed. The presented solution based on OpenMP requires only minimal changes to the source code while achieving a speedup comparable to the results of more sophisticated approaches. The presented framework benefits from the current developments in the computing industry and allows an optimal utilization of multicore CPUs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Interactive Cutting of Deformable Objects

In this paper we present a novel approach for stable interactive cutting of deformable objects in virtual environments. Our method is based on the extended finite elements method, allowing for a modeling of discontinuities without remeshing. As no new elements are created, the impact on performance of the simulation is minimized.

متن کامل

Improved meshless deformation techniques for real-time interactive collaborative environments

Meshless deformation based on shape matching is a new technique for simulating deformable objects without requiring mesh connectivity information. The approach focuses on speed, ease of use and stability at the expense of physical accuracy. In this paper we introduce improvements to the technique that increase physical realism and make it more suitable for use in interactive real-time environme...

متن کامل

Improved Meshless Deformation Techniques for Plausible Interactive Soft Object Simulations

Meshless deformation based on shape matching is a new technique for simulating deformable objects without requiring mesh connectivity information. The approach focuses on speed, ease of use and stability at the expense of physical accuracy. In this paper we introduce improvements to the technique that increase physical realism and make it more suitable for use in interactive real-time environme...

متن کامل

Haptic Dissection of Deformable Objects using Extended Finite Element Method

Interactive dissection simulation is an important research topic in the virtual reality (VR) community. There are many efforts on this topic; however, most of them focus on building a realistic simulation system regardless of the cost, and they often require expensive workstations and specialized haptic devices which prevent broader adoption. We show how to build a realistic dissection simulati...

متن کامل

A Flexible and Interactive Approach for Cutting Deformable Objects

We present a hierarchical finite element method for interactively simulating cuts in linear elastic deformable bodies. Our method draws upon recent work on octree and multigrid schemes for the efficient numerical solution of partial differential equations. We propose a novel approach for incorporating topological changes in octree grids into multigrid schemes, including algorithms for updating ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007